欢迎访问兰州大学电路与系统研究所!
中文版 | English

地址:兰州大学飞云楼

学术论文
您现在的位置:首页 > 科研成果 > 学术论文

部分发表的学术论文

1. Yuli Chen, Sung-Kee Park, Yide Ma, and Rajeshkanna Ala. A New Automatic Parameter Setting Method of a Simplified PCNN for Image Segmentation. IEEE Transactions on Neural Networks. 2011, 22(6):880-892.

2. Kun Zhan, Hongjuan Zhang, and Yide Ma. New Spiking Cortical Model for Invariant Texture Retrieval and Image Processing. IEEE Transactions on Neural Networks. 2009, 20(12): 1980-1986.

3. Yuli Chen, Yide Ma, Dong Hwan Kim, and Sung-Kee Park. Region-based Object Recognition by Color Segmentation Using a Simplified PCNN. IEEE Transactions on Neural Networks and Learning Systems. 2014.

4. Deng X, Yan C, Ma Y. PCNN mechanism and its parameter settings[J]. IEEE transactions on neural networks and learning systems, 2019.

5. Yang, Z., Lian, J., Guo, Y., Li, S., Wang, D., Sun, W., & Ma, Y. An overview of PCNN model’s development and its application in image processing. Archives of Computational Methods in Engineering, 2019, 26(2), 491-505.

6. Wang R, Ma Y, Sun W, et al. Multi-level nested pyramid network for mass segmentation in mammograms[J]. Neurocomputing, 2019, 363: 313-320.

7. Yang, Z., Lian, J., Li, S., Guo, Y., Qi, Y., & Ma, Y. Heterogeneous SPCNN and its application in image segmentation. Neurocomputing, 2018, 285, 196-203.

8. Ya’nan Guo., Yang Z, Ma Y, Lian J, et al. Saliency motivated improved simplified PCNN model for object segmentation[J]. Neurocomputing, 2018, 275: 2179-2190.

9. Zhaobin Wang, Yide Ma, and Jason Gu. Multi-focus image fusion using PCNN. Pattern Recognition, 2010, 43(6):2003-2016.

10. Xiaojun Li, Yide Ma, and Xiaowen Feng. Self-Adaptive Autowave Pulse-Coupled Neural Network for Shortest-Path Problem. Neurocomputing. 2013, 15: 63-71.

11. Xiaojun Li, Yide Ma, Zhaobin Wang, and Wenrui Yu, Geometry-Invariant Texture Retrieval Using a Dual-Output Pulse-Coupled Neural Network. Neural Computation. 2012, 24(1): 194-216

12. Rongchang Zhao and Yide Ma. A Region Segmentation Method for Region-Oriented Image Compression. Neurocomputing. 2012, 85(15): 45-52.

13. K. Zhan, F. Nie, J. Wang, Y. Yang, Multiview consensus graph clustering, IEEE Transactions on Image Processing, 2019, 28(3), 1261-1270.

14. K. Zhan, C. Niu, C. Chen, F. Nie, C. Zhang, Y. Yang, Graph structure fusion for multiview clustering, IEEE Transactions on Knowledge and Data Engineering, 2019, 31(30), 1984-1993.

15. K. Zhan, X. Chang, J. Guan, L. Chen, Z. Ma, Y. Yang, Adaptive structure discovery for multimedia analysis using multiple features, IEEE Transactions on Cybernetics, 2019, 48(5), 1826-1834.

16. K. Zhan, C. Zhang, J. Guan, J. Wang, Graph learning for multiview clustering, IEEE Transactions on Cybernetics, 2018, 48(10), 2887--2895.

17. K. Zhan, J. Shi, J. Wang, H. Wang, Y. Xie, Adaptive structure concept factorization for multi-view clustering, Neural Computation, 2018, 30(4), 1080-1103

18. Wang Zhaobin, Guo Lijie, Wang Shuai, Chen Lina, Wang Hao. Review of Random Walk in Image Processing. Archives of Computational Methods in Engineering. 2019, 26(1):17-34.

19. Wang Zhaobin, Wang Shuai, Guo Lijie. Novel multi-focus image fusion based on PCNN and random walks. Neural Computing and Applications. 2018, 29(11): 1101-1114

20. Wang Zhaobin , Li Huale, Zhu Ying, Xu Tianfang. Review of Plant Identification Based on Image Processing. Archives of Computational Methods in Engineering. 2017, 24(3): 637-654.

21. Wang Zhaobin, Wang Shuai, Zhu Ying, Ma Yide. Review of Image Fusion Based on Pulse-Coupled Neural Network. Archives of Computational Methods in Engineering. 2016, 23(4): 659-671

22. Wang Zhaobin, Wang Hao. Image smoothing with generalized random walks: Algorithm and applications. Applied Soft Computing. 2016, 46: 792-804

23. Wang Zhaobin, Sun Xiaoguang, Zhang Yaonan, Zhu Ying, Ma Yide. Leaf recognition based on PCNN. Neural Computing and Applications. 2016, 27(4): 899-908

24. Wang Zhaobin, Ma Yide. Medical Image Fusion Using m-PCNN [J].Information Fusion. 2008, 9(2):176 –185.

25. K. Zhan, J. Shi, H. Wang, Y. Xie, Q. Li. Computational mechanisms of pulse-coupled neural networks: A comprehensive review. Archives of Computational Methods in Engineering, 2017, 24(3), 573--588.

26. K. Zhan, J. Teng, J. Shi, Q. Li, M. Wang. Feature-linking model for image enhancement. Neural Computation, 2016, 28(6), 1072--1100.